Game Theory

Lecture 04

Nash's Theorem

The Brouwer Fixed Point Theorem

We will use the following to prove Nash's Theorem.

Theorem(Brouwer, 1909) Every continuous function $f:D\mapsto D$ mapping a compact and convex, nonempty subset $D\subseteq\mathbb{R}^m$ to itself has a "fixed point", i.e., there is $x^*\in D$ such that $f(x^*)=x^*$.

Explanation:

- A "continuous" function is intuitively one whose graph has no "jumps". I.e., any "sufficiently little (non-zero) change" in x can change f(x) by at most "as little (non-zero) change as desired".
- For our current purposes, we don't need to know exactly what "compact and convex" means.

(See the appendix of this lecture for definitions.)

We only state the following fact:

Fact The set of profiles $X = X_1 \times ... \times X_n$ is a compact and convex subset of R^m . (Where $m = \sum_{i=1}^n m_i$, recalling that $m_i = |S_i|$.)

Simple cases of Brouwer's Theorem

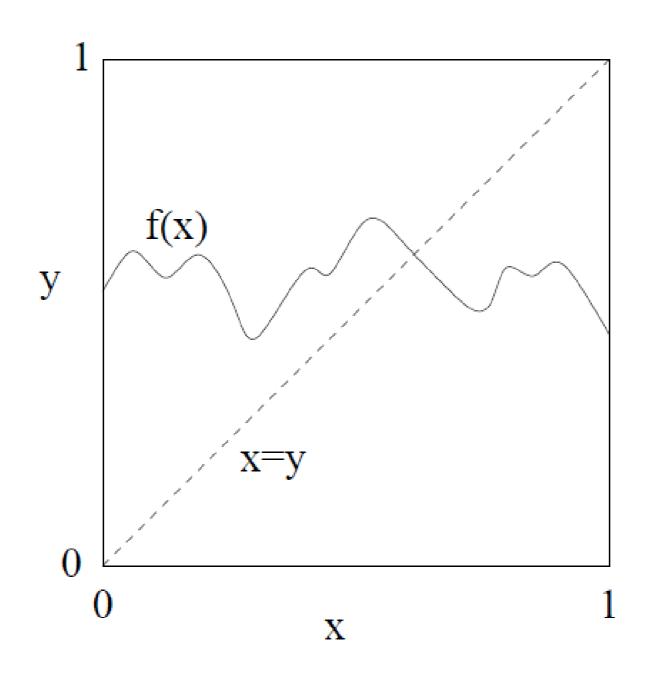
To see a simple example of what Brouwer's theorem says, consider the interval $[0,1] = \{x \mid 0 \le x \le 1\}$.

[0,1] is compact and convex.

(More generally, $[0,1]^n$ is compact and convex.)

For a continuous $f:[0,1]\mapsto [0,1]$, you can "visualize" why the theorem is true:

The "visual proof" in the 1-dimensional case:



For $f:[0,1]^2\mapsto [0,1]^2$, the theorem is already far less obvious: "the crumpled sheet experiment".

Some Remarks

- Brouwer's Theorem is a deep and important result in topology.
- It is not very easy to prove, and we won't prove it.
- If you are desperate to see a proof, there are many.
 See, e.g., any of these:
 - [Milnor'66] (Differential Topology). (uses, e.g., Sard's Theorem).
 - [Scarf'67 & '73, Kuhn'68, Border'89], uses
 Sperner's Lemma.
 - Rotman'88] (Algebraic Topology). (uses homology, etc.)

Proof of Nash's Theorem

Proof: (Nash's 1951 proof)

We will define a continuous function $f: X \mapsto X$, where $X = X_1 \times \ldots \times X_n$, and we will show that if $f(x^*) = x^*$ then $x^* = (x_1^*, \ldots, x_n^*)$ must be a Nash Equilibrium.

By Brouwer's Theorem, we will be done.

(In fact, it will turn out that x^* is a Nash Equilibrium if and only if $f(x^*) = x^*$.)

recall: A profile $x^* = (x_1^*, \dots, x_n^*) \in X$ is a Nash Equilibrium if and only if, for every player i, and every pure strategy $\pi_{i,j}$, $j = 1, \dots, m_i$

$$U_i(x^*) \ge U_i(x^*_{-i}; \pi_{i,j})$$

So, rephrasing our goal, we want to find $x^* = (x_1^*, \dots, x_n^*)$ such that

$$U_i(x_{-i}^*; \pi_{i,j}) \le U_i(x^*)$$

i.e., such that

$$U_i(x_{-i}^*; \pi_{i,j}) - U_i(x^*) \le 0$$

for all players $i \in N$, and all $j = 1, \ldots, m_i$.

For a mixed profile $x = (x_1, x_2, \dots, x_n) \in X$: let

$$\varphi_{i,j}(x) = \max\{0, U_i(x_{-i}; \pi_{i,j}) - U_i(x)\}$$

Intuitively, $\varphi_{i,j}(x)$ measures "how much better off" player i would be if he/she picked $\pi_{i,j}$ instead of x_i (and everyone else remained unchanged).

Define $f:X\mapsto X$ as follows: For $x=(x_1,x_2,\ldots,x_n)\in X$, let

$$f(x) = (x'_1, x'_2, \dots, x'_n)$$

where for all i, and $j = 1, \ldots, m_i$,

$$x_i'(j) = \frac{x_i(j) + \varphi_{i,j}(x)}{1 + \sum_{k=1}^{m_i} \varphi_{i,k}(x)}$$

Facts:

- 1. If $x \in X$, then $f(x) = (x'_1, \dots, x'_n) \in X$.
- 2. $f: X \mapsto X$ is continuous.

(These facts are not hard to check.)

Thus, by Brouwer, there exists $x^* = (x_1^*, x_2^*, \dots, x_n^*) \in X$ such that $f(x^*) = x^*$.

Now we have to show x^* is a NE.

For each i, and for $j = 1, \ldots, m_i$,

$$x_i^*(j) = \frac{x_i^*(j) + \varphi_{i,j}(x^*)}{1 + \sum_{k=1}^{m_i} \varphi_{i,k}(x^*)}$$

thus,

$$x_i^*(j)(1 + \sum_{k=1}^{m_i} \varphi_{i,k}(x^*)) = x_i^*(j) + \varphi_{i,j}(x^*)$$

hence,

$$x_i^*(j) \sum_{k=1}^{m_i} \varphi_{i,k}(x^*) = \varphi_{i,j}(x^*)$$

We will show that in fact this implies $\varphi_{i,j}(x^*)$ must be equal to 0 for all j.

Claim: For any mixed profile x, for each player i, there is some j such that $x_i(j) > 0$ and $\varphi_{i,j}(x) = 0$.

Proof of claim: For any $x \in X$,

$$\varphi_{i,j}(x) = \max\{0, U_i(x_{-i}; \pi_{i,j}) - U_i(x)\}\$$

Since $U_i(x)$ is the "weighted average" of $U_i(x_{-i};\pi_{i,j})$'s, based on the "weights" in x_i , there must be some j used in x_i , i.e., with $x_i(j) > 0$, such that $U_i(x_{-i};\pi_{i,j})$ is no more than the weighted average. I.e.,

$$U_i(x_{-i}; \pi_{i,j}) \leq U_i(x)$$

I.e.,

$$U_i(x_{-i}; \pi_{i,j}) - U_i(x) \le 0$$

Therefore,

$$\varphi_{i,j}(x) = \max\{0, U_i(x_{-i}; \pi_{i,j}) - U_i(x)\} = 0$$

Thus, for such a j, $x_i^*(j) > 0$ and

$$x_i^*(j) \sum_{k=1}^{m_1} \varphi_{i,k}(x^*) = 0 = \varphi_{i,j}(x^*)$$

But, since $\varphi_{i,k}(x^*)$'s are all ≥ 0 , this means $\varphi_{i,k}(x^*) = 0$ for all $k = 1, \ldots, m_i$. Thus,

For all players i, and for $j = 1, \ldots, m_i$,

$$U_i(x^*) \ge U_i(x^*_{-i}; \pi_{i,j})$$

Q.E.D. (Nash's Theorem)

In fact, since $U_i(x^*)$ is the "weighted average" of $U_i(x^*_{-i}, \pi_{i,j})$'s, we see that

Useful Corollary for Nash Equilibria:

$$U_i(x^*) = U_i(x^*_{-i}, \pi_{i,j})$$
, whenever $x^*_i(j) > 0$.

Rephrased: In a Nash Equilibrium x^* , if $x_i^*(j) > 0$ then $U_i(x_{-i}^*; \pi_{i,j}) = U_i(x^*)$; i.e., each such $\pi_{i,j}$ is itself a "best response" to x_{-i}^* .

This is a subtle but very important point. It will be useful later when we try to compute NE's. 10

Remarks

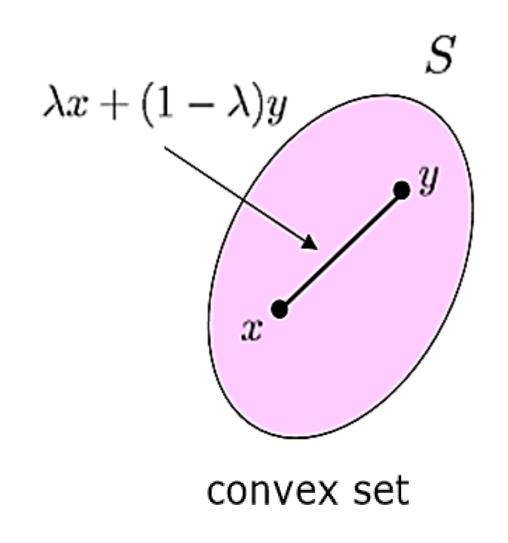
- The proof using Brouwer gives ostensibly no clue how to compute a Nash Equilibrium. It just says it exists!
- We will come back to the question of computing Nash Equilibria in general games later in the course.

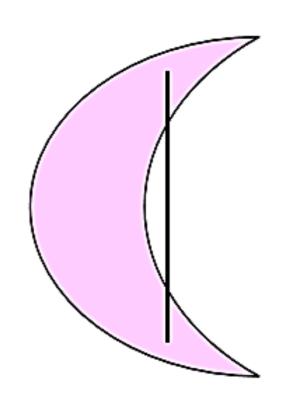
Appendix: continuity, compactness, convexity

Definition For $x,y\in\mathbb{R}^n$, $\mathrm{dist}(x,y)=\sqrt{\sum_{i=1}^n(x(i)-y(i))^2}$ denotes the Euclidean distance between points x and y.

A function $f:D\subseteq\mathbb{R}^n\mapsto\mathbb{R}^n$ is **continuous at a point** $x\in D$ if for all $\epsilon>0$, there exists $\delta>0$, such that for all $y\in D$: if $\mathrm{dist}(x,y)<\delta$ then $\mathrm{dist}(f(x),f(y))<\epsilon$. f is called **continuous** if it is continuous at every point $x\in D$.

Definition A set $K \subseteq \mathbb{R}^n$ is **convex** if for all $x, y \in K$ and all $\lambda \in [0, 1]$, $\lambda x + (1 - \lambda)y \in K$.





not a convex set

Rather than stating a general definition of compactness for arbitrary topological spaces, we use the following fact as a definition, restricted to Euclidean space:

Fact A set $K \subseteq \mathbb{R}^n$ is **compact** if and only if it is **closed** and **bounded**. (So, we need to define "closed" and "bounded".)

Definition A set $K \subseteq \mathbb{R}^n$ is **bounded** iff there is some nonnegative integer M, such that $K \subseteq [-M, M]^n$. (i.e., K "fits inside" a finite n-dimensional box.)

Definition A set $K \subseteq \mathbb{R}^n$ is **closed** iff for all sequences x_0, x_1, x_2, \ldots , where for all $i \geq 0$, $x_i \in K$, if there exists $x \in \mathbb{R}^n$ such that $x = \lim_{i \to \infty} x_i$ (i.e., for all $\epsilon > 0$, there exists integer k > 0 such that $\text{dist}(x, x_m) < \epsilon$ for all m > k), then $x \in K$.

(In other words, if a sequence of points is in K then its limit (if it exists) must also be in K.)